
Pat O’Sullivan

Mh4718 Week 1



Week 1

0.1 Representation of Numbers and precision

0.1.1 Representation

Integers are usually represented using a so-called place value notation. A set
of, say b basic symbols is chosen,(b being an integer ≥ 2) and a unique repre-
sentation of n is obtained by finding integers d0, d1, d2, . . . , dn such that

n = dn × bn + dn−1 × bn−1 + · · ·+ d1 × b + d0

and then n is denoted by
dndn−1 . . . d1d0

or by
(dndn−1 . . . d1d0)b

if there is any ambiguity about the base.

The use of ten as a number base for representation is clearly related to our
anatomy. Other number bases are more appropriate to other circumstances.
Computers and calculators use base two (binary)representation of numbers
which requires only two symbols 0 and 1 corresponding with two possible states
(on and off) of a transistor.
Thus, for example, if 1100101 is a base two representation then:
1100101 =
1× 26 + 1× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 64 + 32 + 0 + 0 + 4 + 0 + 1
= 101

1
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1011 could be a base ten or a base two number. Sometimes the context will
make it clear which base we are working in but in case of possible confusion we
will write, say, (1011)2 to indicate a base two representation and (1011)ten to
indicate a base ten representation.

To convert an integer to base two representation we rebundle in twos rather
than in tens.

Example 0.1

Express 155 in base two place value notation:

155÷ 2 = 77 + remainder 1.

That is, 155 = 77 bundles of two + 1. Therefore we will have 1 in the units place.

77÷ 2 = 38 + remainder 1.

That is, 77 = 38 bundles of two + 1
⇒ 155 = 38 bundles of 22 + 1 bundle of 2+1.
Therefore there will be 1 in the 21 column.

38÷ 2 = 19 + remainder 0.

That is, 38 = 19 bundles of two + remainder 0
⇒ 155 = 19 bundles of 23 + 0 bundles of 22 + 1 bundle of 2 +1.
Therefore there will be 0 in the 22 column.

19÷ 2 = 9 + remainder 1.

That is, 19 = 9 bundles of two + remainder 1
⇒ 155 = 9 bundles of 24 +1 bundle of 23 + 0 bundles of 22 + 1 bundle of 2+1.
Therefore there will be 1 in the 23 column.

9÷ 2 = 4 + remainder 1.

That is, 9 = 4 bundles of two + remainder 1
⇒ 155 = 4 bundles of 25 +1 bundle of 24 +1 bundle of 23 + 0 bundles of 22 +
1 bundle of 2+1.
Therefore there will be 1 in the 24 column.

4÷ 2 = 4 + remainder 0.

That is, 4 = 2 bundles of two + remainder 0 ⇒
155 =2 bundles of 26+ 0 bundles of 25 +1 bundle of 24 +1 bundle of 23 + 0
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bundles of 22 + 1 bundle of 2+1.
Therefore there will be 0 in the 25 column.

2÷ 2 = 1 + remainder 0.

That is, 2 = 1 bundles of two + remainder 0
⇒ 155 =1 bundle of 27+0 bundles of 26+ 0 bundles of 25 +1 bundle of 24 +1
bundle of 23 + 0 bundles of 22 + 1 bundle of 2+1.
Therefore there will be 0 in the 26 column and 1 in the 27 column.
Therefore 155 = (10011011)2.

This process can be streamlined as follows:

We get the binary representation of 155 by reading the remainders from bottom
to top.

Using negative powers of the base we can also represent real numbers which
are not integers using place value notation but, in this case, the representation
may not be finite in length.

If we seek to extend the base ten place value notation scheme to, say,
1
8

we
proceed as follows:

Since
1
8

< 1 we cannot break it into units and bundles of ten. Instead we first

seek to break it into bundles of
1
10

’s, that is, bundles of 10−1. We ask then how

many
1
10

’s are in
1
8
.

1
8
÷ 1

10
=

1
8
× 10 =

10
8

= 1
2
8

⇒ 1
8

= (1 +
2
8
)× 1

10
= 1× 1

10
+

2
8
× 1

10
= 1× 10−1 +

2
80
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We now seek to break the left over
2
80

into bundles of
1

100
’s.

We ask how many
1

100
’s are in

2
80

:

2
80
÷ 1

100
=

2
80
× 100 =

200
80

=
20
8

= 2
4
8

⇒ 2
80

= (2 +
4
8
)× 1

100
= 2× 1

100
+

4
8
× 1

100
= 2× 10−2 +

4
800

And so we have:
1
8

= 1× 1
10

+ 2× 10−2 +
4

800

We then seek to break the left over
4

800
into bundles of

1
1000

’s.

4
800

÷ 1
1000

=
4

800
× 1000 =

4000
800

=
40
8

= 5

⇒ 4
800

= 5× 1
1000

And so get
1
8

= 1× 10−1 + 2× 10−2 + 5× 10−3

.
And we have succeed in expressing

1
8

as a sum of powers of 10. And we write

1
8

= 0.125

The process we used above to do this is tedious but note the the digits in the
representation 0.125 were obtained by the steps

10
8

= 1

	

2
8

20
8

= 2

	

4
8

40
8

= 5

And this sequence corresponds with the usual method of dividing 8 into 1:
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This technique is quicker and we use it for actual calculations.

However, if we attempt to represent, say,
1
3

by this means we run into a never
ending process:

How many
1
10

’s in
1
3
?:

1
3
÷ 1

10
=

1
3
× 10 =

10
3

= 3
1
3

⇒ 1
3

= (1 +
1
3
)× 1

10
= 3× 10−1 +

1
30

How many
1

100
’s in

1
30

?:

1
30
÷ 1

100
=

1
30
× 100 =

10
3

= 3
1
3

⇒ 1
30

= (3 +
1
3
)× 1

100
= 3× 10−2 +

1
300

⇒ 1
3

= 3× 10−1 + 3× 10−2 +
1

300

How many
1

1000
’s in

1
300

?:

1
300

÷ 1
1000

=
1

300
× 1000 =

10
3

= 3
1
3

⇒ 1
300

= (3 +
1
3
)× 1

1000
= 3× 10−3 +

1
3000

⇒ 1
3

= 3× 10−1 + 3× 10−2 + 3× 103 +
1

3000
Clearly this process will never terminate. After n steps we will arrive at:

1
3

= 3× 10−1 + 3× 10−2 + 3× 103 + · · ·+ 3× 10−n +
1

3× 10n

That is,
1
3

= 0.3333 . . . . . . 3︸ ︷︷ ︸
n decimalplaces

+
1

3× 10n

We note, however, that 3× 10−1 +3× 10−2 +3× 103 + · · ·+3× 10−n becomes

arbitrarily close to
1
3

- the ‘leftover’
1

3× 10n
is becoming arbitrarily small as

n gets larger.

We say then that the decimal 0.3333 . . . . . . 3︸ ︷︷ ︸
n decimalplaces

‘converges’ to
1
3

as n goes to ∞.
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This is usually expressed by saying that that the decimal representation of
1
3

is infinite with
1
3

= 0.33333333 . . . . . .

or more properly
1
3

= 0.
.
3

To convert a non-integer rational to binary we proceed exactly as in base ten
except that we multipy by two rather than by ten. This is because we want to

break the number up into bundles of
1
2
,

1
22

etc. That is, we want to successively

divide by
1
2

which is the same as multiplying by 2.

Example 0.2

Write 0.375 in binary representation:

0.375

× 2

0 .750

× 2

1 .50

× 2

1 .0

So we see that there are 0 1
2 ’s, 1 1

22 ’s and 1 1
23 ’s which means that the binary

representation of 0.375 is 0.011.

Example 0.3

Write
3
8

in binary place value representation:

3
8
× 2 =

6
8

= 0
6
8

6
8
× 2 =

12
8

= 1
4
8

4
8
× 2 =

8
8

= 1

That is,
3
8

= (0.011)2.
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As in the case of base ten not all rationals can be expressed as a finite sum of
powers of two. In fact some rationals can have a finite base ten representation
but infinite base two:

Example 0.4

Write
1
5

= 0.2 in binary place value representation:

1
5
× 2 =

2
5

= 0
2
5

2
5
× 2 =

4
5

= 0
4
5

4
5
× 2 =

8
5

= 1
3
5

3
5
× 2 =

6
5

= 1
1
5

1
5
× 2 = repeat of line 1

That is,
1
5

= (0.
.
0

.
0

.
1

.
1)2.

In order to convert an infinite repeating binary decimal like this back to base
ten representation we need to find the limit of an infinite series:

0.
.
0

.
0

.
1

.
1 = 0.001100110011 . . .

=
1
23

+
1
24

+
1
27

+
1
28

+
1

211
+

1
212

. . .

=
3
24

+
3
28

+
3

212
+ . . .

The last version of the series above is a geometric series a+ar+ar2 +ar3 + . . .

with a =
3
24

and r =
1
24

which therefore has limit

a

1− r
=

3
24

1− 1
24

=
3

24 − 1
=

1
5
.
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Example 0.5

Write 0.3 in binary place value representation:

0.3× 2 = 0.6 = 0 .6

0.6× 2 = 1.2 = 1 .2

0.2× 2 = 0.4 = 0 .4

0.4× 2 = 0.8 = 0 .8

0.8× 2 = 1.6 = 1 .6

0.6× 2 = repeat of line 2

That is, 0.3 = (0.0
.
1

.
0

.
0

.
1)2.

And
0.0

.
1

.
0

.
0

.
1 = 0.0100110011001 . . .

=
1
22

+
1
25

+
1
26

+
1
29

+
1

210
+

1
213

+ . . .

=
9
25

+
9
29

+
9

213
+ . . .

which is a geometric series with a =
9
25

and r =
1
24

which therefore has limit

9
25

1− 1
24

=
9

25 − 2
=

9
30

=
3
10

= 0.3

0.1.1.1 Finite and infinite decimals.
It is easy to see that any finite decimal can be converted to the form

a

b
with

a, b ∈ Z.

Example 0.6

0.125 =
125
103

=
1
8

0.0017 =
17
104

0.11368 =
11368
105

=
11421
125000

In general we can write

0.d1d2 . . . dn =
d1d2 . . . dn

10n
=

a

b
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where d1d2 . . . dn is an integer whose digits are the digits of the decimal and
a

b
is in lowest form (i.e. a and b have no common factors.)

Now
0.d1d2 . . . dn =

d1d2 . . . dn

10n
=

a

b

⇒ d1d2 . . . dn × b = a× 10n

From the properties of integers we can now make the following deduction:
The denominator b cannot have any prime factors other than 2 or 5
If, for instance, 3 was a factor of b then

3 | b ⇒ 3 | d1d2 . . . dn × b ⇒ 3 | a× 10n.

However, 3 is not a factor of a× 10n because a does not share any factors with
b and the only prime factors of 10n are 2 and 5 and so 3 cannot be a factor of b

It follows then that a fraction
a

b
in lowest form has an infinite decimal expan-

sion in base ten if b has prime factors other than 2 or 5.
Conversely, since

a

2m5n
= a× (0.5)m× (0.2)n is a finite decimal it follows that

a

b
has a finite decimal expansion if b only has prime factors 2 and 5.

Example 0.7
1
3
,
2
3
,
5
7

will have infinite base ten expansions.
1
2
,

2
20

,
5
50

will have finite base ten expansions.

The situation for base two decimals is analogous. If 0.d1d2 . . . dn is a base two
decimal we still have

0.d1d2 . . . dn =
d1d2 . . . dn

10n

but this time d1d2 . . . dn is a base two integer and 10n is 2n in base ten. And
so if 0.d1d2 . . . dn =

a

b
where

a

b
is in lowest form then

(0.d1d2 . . . dn)two =
(d1d2 . . . dn)two

(10n)two
=

a

b

⇒ (d1d2 . . . dn)two × b = a× (10n)two = a× (2n)ten

Then by the same argument as above we conclude that b cannot have any prime
factors other than 2. That is b must be of the form 2n.
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Example 0.8
1
3
,
2
3
,
5
7
,
1
5
,
2
5
,

1
10

etc. will have infinite base two expansions.
1
2
,
3
8
,

5
16

etc. will have finite base two expansions.

Note: The algorithms for adding and multiplying binary numberals are essen-
tially the same as for base ten numerals.

Example 0.9

Adding with ’carrying’in base two:

1 0 1 0 1 1

1 0 0 0 0 1

1 01111101 1

1 1 1 1 0 0 1

Multiplying by the 10 or 100 etc. in any base moves the decimal point to the
right:

10011.1001× 10 = 100111.001

10011.1001× 100 = 1001110.01

Dividing by the 10 or 100 etc. in any base moves the decimal point to the left:

10011.1001÷ 10 = 1001.11001

10011.1001÷ 100 = 100.111001


